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The vast majority of United States cooperative observers introduce subjective biases into 

their measurements of daily precipitation.
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T he Cooperative Observer Program (COOP) was 
 established in the 1890s to make daily meteo-
 rological observations across the United States, 

primarily for agricultural purposes. The COOP 
network has since become the backbone of tempera-
ture and precipitation data that characterize means, 
trends, and extremes in U.S. climate. COOP data 
are routinely used in a wide variety of applications, 
such as agricultural planning, environmental impact 
statements, road and dam safety regulations, building 
codes, forensic meteorology, water supply forecasting, 
weather forecast model initialization, climate map-
ping, flood hazard assessment, and many others. A 
subset of COOP stations with relatively complete, 
long periods of record, and few station moves forms 

the U.S. Historical Climate Network (USHCN). The 
USHCN provides much of the country’s official data 
on climate trends and variability over the past century 
(Karl et al. 1990; Easterling et al. 1999; Williams et al. 
2004).

Precipitation data (rain and melted snow) are 
recorded manually every day by over 12,000 COOP 
observers across the United States. The measuring 
equipment is very simple, and has not changed 
appreciably since the network was established. 
Precipitation data from most COOP sites are read 
from a calibrated stick placed into a narrow tube 
within an 8-in.-diameter rain gauge, much like 
the oil level is measured in an automobile (Fig. 1). 
The National Weather Service COOP Observing 
Handbook (NOAA–NWS 1989) describes the 
procedure for measuring precipitation from 8-in. 
nonrecording gauges as follows:

Remove the funnel and insert the measuring stick 
into the bottom of the measuring tube, leaving 
it there for two or three seconds. The water will 
darken the stick. Remove the stick and read the 
rainfall amount from the top of the darkened part 
of the stick. Example: if the stick is darkened to 
three marks above the 0.80 inch mark (the longer 
horizontal white line beneath the 0.80), the rainfall 
is 0.83 inch.

Observer Bias in Daily Precipitation 
Measurements at United States 
Cooperative Network Stations
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The measuring stick has a large, labeled tick mark 
every 0.10 in., a large, unlabeled tick mark every 
0.05 in., and small, unlabeled tick mark every inter-
vening 0.01 in. (Fig. 2).

Observations of daily precipitation are needed 
to parameterize stochastic 
weather simulation models. 
These models, often called 
weather generators, are in 
wide use for a variety of 
applications. They are easy 
to use, and have the abil-
ity to synthesize long, seri-
ally complete time series of 
weather data that mimic the 
true climate of a location, 
which makes them useful 
in biological and hydro-
logical modeling and cli-
mate change investigations, 
among others (Richardson 
1981; Johnson et al. 1996; 
Katz 1996). Weather gen-
erators require input param-
eters, derived from station 
observations, which describe 
the statistical properties of 
the climate at a location. 
Many weather generators use 
a two-state Markov chain of 
first order for precipitation 
occurrence, and all other 
generated quantities are de-
pendent on whether a given 
day is wet or dry. Therefore, 
it is crucial that the relative 
frequencies and sequences of wet and dry days are 
accurately portrayed in the input parameters. In 
addition, precipitation amounts are often derived 
from a mixed exponential distribution that is sensi-
tive to the frequency of observations of precipitation 
at very low amounts (i.e., less than 1 mm).

In a recent study, we used COOP precipitation 
data to extend the work of Johnson et al. (2000) 
to spatially interpolate input parameters for the 
Generation of Climate Elements for Multiple Uses 
(GEM6) weather generator (USDA–ARS 1994). 
Spatial interpolation of the input parameters 
would allow daily weather series to be generated at 
locations where no stations exist. Our goal was to 
expand the original mapping region from a portion 
of the Pacific Northwest to the entire conterminous 
United States.

Initial mapping of some of the precipitation-related 
GEM6 parameters using daily COOP data produced 
spatial patterns that were highly discontinuous in 
space, even on f lat terrain away from coastlines. 
When we investigated the cause of these spatial dis-

crepancies, we found that 
precipitation data from most 
of the COOP stations suffered 
from observer bias; that is, 
the tendency for the observer 
to favor or avoid some pre-
cipitation values compared 
to others. Biases included 
underreporting of daily pre-
cipitation amounts of less 
than 0.05 in. (1.27 mm), and a 
strong tendency for observers 
to favor precipitation amounts 
divisible by 5 and/or 10 when 
expressed as inches. These 
biases were not stationary in 
time, and thus had significant 
effects on the temporal trends 
as well as long-term means of 
commonly used precipitation 
statistics. Stations included 
in the USHCN dataset were 
also affected, raising ques-
tions about how precipita-
tion trends and variability 
from this network should be 
interpreted.

The objectives of this 
paper are to make a f irst 
attempt at quantifying these 
biases , provide users of 

COOP precipitation data with some 
basic tools and insights for identifying 
and assessing these biases, and suggest 
additional investigations and actions to 
address this issue. COOP observers in 
the United States measure precipitation 
in English units. Given that the observer 
bias discussed here is uniquely tied to 
this system, precipitation amounts are 
given first in inches, followed by mil-
limeter equivalents in parenthesis. All 
other measures are given in standard 
metric, or MKS, units.

FIG. 1. Corvallis, Oregon, COOP observer 
Richard Mattix inserting the measuring 
stick into his rain gauge.

FIG. 2. Standard measuring stick used 
to record precipitation in a COOP rain 
gauge.
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TYPES OF OBSERVER BIAS AND ASSESS-
MENT STATISTICS. We discovered two major 
types of observer bias in our initial investigation: 
1) so-called underreporting bias, or underreporting 
of daily precipitation amounts of less than 0.05 in. 
(1.27 mm); and 2) so-called 5/10 bias, or overreporting 
of daily precipitation amounts evenly divisible by 5 
and/or 10, such as 0.05, 0.10, 0.15, 0.20, and 0.25 in. 
(1.27, 2.54, 3.81, 5.08, and 6.35 mm). These two types 
were usually related; a station with underreporting 
bias was likely to have a 5/10 bias as well.

We used daily precipitation data from the National 
Climatic Data Center’s (NCDC’s) TD3200 dataset 
(NOAA–NCDC 2006) for this analysis. Each station 
was subjected to data completeness tests of sufficient 
rigor to ensure reasonable weather generator param-
eters, given good-quality data. To ensure the accurate 
calculation of wet/dry day probabilities, daily precipita-
tion entries that were flagged as accumulated totals for 
more than one day were set to missing. For a given year 
to be complete, each of the 26 14-day periods in the year 
had to have at least 12 days (85%) without missing data, 
and there had to have been at least 26 (85%) complete 
years within the 1971–2000 period.1 GEM6 operates 
on 14-day statistical periods, hence the use of this time 
block, rather than a monthly time interval.

We devised two kinds of simple statistical tests to 
detect stations that exhibited one or both observa-
tional biases. Our underreporting bias test consisted 
of calculating the ratio

 RL = C6–10/C1–5, (1)

where C6–10 is the total observation count in the 
0.06–0.10-in. (1.52–2.54 mm) range, C1–5 is the total 
observation count in the 0.01–0.05-in. range, and 
RL is the ratio of the two. A station exhibiting an 
RL that exceeded a given threshold was most likely 
underreporting precipitation in the 0.01–0.05-in. 
(0.25–1.27 mm) range.

We assessed possible 5/10 biases by separating the 
frequencies of observations in amounts divisible by 
five- and/or ten-hundredths of an inch and those not 

divisible by five- or ten-hundredths of an inch into 
separate populations, and compared their means. 
If they were significantly different, a 5/10 bias was 
indicated. In order to make consistent comparisons 
across a spectrum of frequency bins, it was necessary 
to detrend the frequency histogram. We did this by 
fitting a gamma distribution to each station’s pre-
cipitation frequency histogram (Evans et al. 2000). 
It was not necessary that the gamma function fit 
the data either precisely, or without bias; rather, the 
predictions were used only as a way to detrend the 
frequency distribution.

Because of computational constraints in solving 
the gamma distribution, predictions become un-
stable as precipitation approaches zero. Therefore, 
no frequency predictions were made below 0.03 in. 
(0.76 mm). (This lower bound has no effect on the 
detection of underreporting bias, because frequen-
cies were detrended for the 5/10 test only.) In addi-
tion, no frequency predictions were made above 1 in. 
(25.40 mm), because observed frequencies at these 
precipitation amounts were typically very low.

We calculated the percent difference, or residual 
(R), between expected and observed frequencies as

 R = 100 × (P – O), (2)

where P is the predicted frequency (via the gamma 
function) and O is the observed frequency. We tested 
the 5s and 10s biases separately. For the fives bias 
test, the first residual mean (R—1) was calculated by 
averaging the residuals over the so-called ones bins, 
which include all amounts, except those divisible by 
5; the second (R—5) was calculated as the average of all 
residuals for the so-called five bins, which include 
only amounts divisible by 5:

  (3)

where n1 and n5 are the number of ones and fives bins, 
respectively, and R1 and R5 are residuals, calculated 

1 Tests were conducted using alternative thresholds for data completeness. At 90% completeness, the number of stations avail-
able was very low, reducing spatial coverage, and data quality did not improve noticeably compared to the 85% threshold. 
An 80% threshold admitted more stations, but reductions in data quality became noticeable. The 85% data completeness 
criterion used here is not dissimilar to those used by the NCDC and the World Meteorological Organization (WMO). When 
developing monthly precipitation statistics in its TD3220 dataset, the NCDC calculated, but flagged, monthly precipitation 
totals with one to nine missing days (70%–97% completion), and did not calculate total precipitation for months with more 
than nine missing days (NOAA–NCDC 2003). WMO guidelines for computing 30-yr normals defined a missing month as 
having 5 or more consecutive daily values missing (83% completion), or a total of 11 or more missing daily values in the 
month (63% completion; WMO 1989).
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from Eq. (2) that fall into the ones and fives bins, 
respectively. The tens mean was calculated similarly, 
but using only bins divisible by 10.

We then used a t-test for comparing the means for 
small samples, testing the hypothesis that R—1 and R—5 
were not equal.2 A t statistic was calculated:

 t = (R—1 – R—5)/[s2 (n1–1 + n5–2)]0.5, (4)

where s2 is the pooled variance. A two-tailed rejection 
region t < –tά/2, t > tά/2 was established, where ά is the 
alpha, or significance, level for the test. Although our 
main interest was in cases for which the fives-bin 
residuals were significantly greater than the ones-bin 
residuals, we applied a two-tailed t-test in case there 
were situations for which the opposite was true, sug-
gesting an avoidance of the fives bins. This occurred 
only rarely. We followed a similar procedure for the 
tens test.

The underreporting bias and 5/10 tests were run 
on COOP stations that passed the data completeness 
tests discussed earlier. Initial threshold alpha values 
for the 5/10 bias tests and ratio cutoffs for the under-
reporting bias test were set, and stations that failed 
any of the tests were removed from the dataset. The 
station values were then examined spatially in parts 
of the country where terrain and coastal features 
should have minimal effect on the spatial patterns of 
precipitation. The process of setting threshold values, 
removing stations, and mapping the remaining 
stations was performed repeatedly until it appeared 
that an optimal balance between removing the worst 
stations and keeping the best stations had been 

reached. The final threshold alpha level for the 5/10 
t-tests was 0.01, and the final threshold ratio (RL) for 
the underreporting bias test was 0.60. These threshold 
values are assumed throughout this paper.

EXAMPLES OF OBSERVER BIAS. Figure 3 
depicts frequency histograms of daily precipitation 
amounts from two COOP stations that show no 
visible observer bias during the period 1971–2000, 
and passed all observer bias tests (Table 1). Bishop, 
California (COOP ID 040822), is a desert site with 
a mean annual precipitation of 4.90 in. (125 mm), 
and Quillayute, Washington (456858), is a coastal 
rainforest site with a mean annual precipitation of 
101.90 in. (2588 mm). Despite representing extremely 
different precipitation regimes, the histograms have 
a remarkably similar shape. Both stations exhibit a 
maximum frequency at 0.01 in. (0.25 mm), with a 
relatively smooth decrease in frequency of occur-
rence as the daily precipitation amount increases. 
The Bishop station experienced fewer precipitation 
events than the Quillayute station, and thus it is not 
surprising that the Bishop histogram is not as smooth 

2 The t-test assumes that the distributions of the samples being 
compared are generally normally distributed. We applied the 
Lilliefors test for normality to test this assumption, and found 
that it was occasionally violated in cases for which the gamma 
distribution did not fit well or the station was severely biased. 
As an alternative to the t-test, we applied the Mann–Whitney 
Wilcoxon rank-sum test, which does not assume normality, 
and obtained very similar results to those using the t-test. 
This gave us confidence that the overall sample distributions 
were sufficiently normally distributed for the t-test.

FIG. 3. Percent frequency distribution of daily pre-
cipitation of at least 0.01 in. for the period 1971–
2000 at COOP stations: (a) Bishop, CA (040822), 
mean annual precipitation of 4.9 in. (125 mm); and 
(b) Quillayute, WA (456858), mean annual precipita-
tion of 101.9 in. (2587 mm). Neither station exhibits 
appreciable observer bias. Solid curve is the fitted 
gamma function.
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as the Quillayute histogram. Generally, the more pre-
cipitation events included, the smoother the appear-
ance of the frequency histogram; at least 10 yr of data 
are typically required to obtain a smooth histogram 
at an unbiased site, and to provide enough frequency 
counts in various precipitation bins to produce stable 
statistical results.

Figures 4–6 show examples of frequency histo-
grams from seriously biased stations paired with 
those from nearby stations with little bias. Accompa-
nying observer bias test results are given in Table 1. 
All stations discussed passed the data completeness 
tests for the 1971–2000 period. These comparisons, 
and others analyzed but not shown here, strongly sug-
gest that the unusual frequency histograms are not a 
result of true climatic conditions, but of inaccurate re-
porting of those conditions. Philadelphia, Mississippi 
(COOP ID 226894; Fig. 4a), suffers from a consider-
able underreporting bias (Table 1). Instead of the 
expected decreasing frequency trend between 0.01 in. 
(0.25 mm) and 0.10 in. (2.54 mm), Philadelphia 
exhibits a sharply increasing frequency trend, with 
virtually no observations of 0.01 in. (0.25 mm) dur-
ing the 30-yr period. This station also suffers from 
5/10 bias (Table 1), with several frequency spikes at 

amounts divisible by 10. The number of observations 
of 0.10 in. (2.54 mm) is strikingly high. The observer 
also seemed to have avoided readings ending in 
nine, such as 0.29, 0.39, and 0.49 in. (7.40, 9.90, and 

TABLE 1. Results of underreporting bias, and 5s bias and 10s bias means tests for COOP stations shown in 
Figs. 4–6, and 9. Period of record is 1971–2000.

Station
Underreporting bias 

ratio (RL)
5s bias means test 10s bias means test

t statistic p value t statistic p value

Bishop, CA (040822) 0.31 0.05 0.480 0.25 0.402

Quillayute, WA (456858) 0.44 –1.26 0.106 –1.43 0.079

Philadelphia 1 WSW, MS (226894) 3.57b 4.13 0.000a 4.33 0.000a

Laurel, MS (224939) 0.44 1.97 0.026 0.91 0.184

Purcell, OK (347327) 0.95b 10.79 0.000a 9.37 0.000a

Watonga, OK (349364) 0.40 1.43 0.078 0.58 0.283

Cloverdale, OR (351682) 0.84b 19.18 0.000a 17.03 0.000a

Otis 2 NE, OR (356366) 0.43 3.49 0.000a 0.99 0.163

Vale, OR (358797) 0.63b 4.43 0.000a 4.63 0.000a

Malheur Branch Exp. Sta., OR (355160) 0.47 1.21 0.116 –0.06 0.476

aFailed means test at alpha = 0.01.
bFailed underreporting bias test at threshold = 0.60.

FIG. 4. Percent frequency distribution of daily precipi-
tation of at least 0.01 in. for the period 1971–2000 at 
COOP stations: (a) Philadelphia 1 WSW, MS (226894), 
which exhibits a strong underreporting bias and a small 
5/10 bias; and (b) Laurel, MS (224939), approximately 
100 km to the south, which exhibits only a slight 5/10 
bias. Solid curve is the fitted gamma function.
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12.40 mm, respectively), possibly rounding up to the 
nearest 0.10 in. (2.54 mm). In contrast, the frequency 
histogram at Laurel, Mississippi (224939), approxi-
mately 100 km to the south, shows only a slightly 
visible 5/10 bias (Fig. 4b) and passed all observer bias 
tests (Table 1).

Figure 5 compares precipitation frequency 
histograms from Purcell 5 SW, Oklahoma (347327), 
and Watonga, Oklahoma (439364), approximately 
150 km to the northwest (see Fig. 7). Purcell 5 SW 
has a considerable underreporting bias, as well as a 
well-defined 5/10 bias, and fails all observer bias tests 
(Fig. 5a; Table 1). In contrast, Watonga shows little 
underreporting bias and perhaps only a slight 5/10 bias, 
and passed all observer bias tests (Fig. 5b; Table 1). The 
frequency of daily precipitation values of 0.01–0.03 in. 
(0.25–0.762 mm) was 2–3 times lower at Purcell 5 SW 

than at Watonga, and this pattern continued into the 
trace category (not shown). Further analysis showed 
that the frequency deficit was made up by a relative 
increase in the percent of days with zero precipitation. 
Despite Purcell 5 SW receiving about 25% more total 
precipitation annually than Watonga, both stations 
recorded zero precipitation on about the same num-
ber of days. This suggests that the observer at Purcell 
5 SW had a higher threshold for inconsequential pre-
cipitation than the observer at Watonga (Hyers and 
Zintambila 1993; Snijders 1986).

Figure 6 compares Cloverdale, Oregon (351682), 
on the northern Oregon coast, with Otis 2 NE, 
Oregon (356366), 20 km to the south. Cloverdale 
(Fig. 6a) exhibits a striking 5/10 bias, with readings 
divisible by 5 and 10 occurring 3–6 times more often 
than other amounts. This station failed all observer 

FIG. 5. Percent frequency distribution of daily pre-
cipitation of at least 0.01 in. for the period 1971–2000 at 
COOP stations: (a) Purcell 5 SW, OK (347327), which 
exhibits an underreporting bias and a strong 5/10 bias; 
and (b) Watonga, OK (439364), approximately 150 km 
to the northwest, which exhibits little bias. Solid curve 
is the fitted gamma function.

FIG. 6. Percent frequency distribution of daily precipi-
tation of at least 0.01 in. for the period 1971–2000 at 
COOP stations: (a) Cloverdale, OR (351682), which 
exhibits an underreporting bias and a very strong 5/10 
bias; and (b) Otis NE, OR (356366), approximately 
20 km to the south, which exhibits no appreciable 
underreporting bias, but a small 5/10 bias. Solid curve 
is the fitted gamma function.
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bias tests (Table 1). The frequency histogram for Otis 
2 NE (Fig. 6b) is remarkably different, with only a 
minor 5/10 bias visible. Interestingly, Otis failed the 
fives bias means test by a small margin (Table 1), 
indicating that the observer bias tests at the current 
0.01 alpha threshold identified stations with biases 
that were not prominent visually.

SPATIAL AND TEMPORAL RAMIFICATIONS. 
Spatial ramifications. An example of a simple spatial 
analysis for eastern Okla-
homa is shown in Fig. 7. A 
widely used precipitation 
statistic, the annual percent 
of days that were observed 
to be wet (i.e., days receiving 
at least 0.01 in. or 0.25 mm) 
was interpolated with a 
simple two-dimensional 
spline fit before and after re-
moval of stations that failed 
either the underreporting 
bias or the 5/10 bias tests. 
Only stations that passed 
the data completeness tests 
were considered. The dif-
ferences in the two maps 
are striking. The pattern of 
wet day percentages using 
all stations is quite complex, 
with what appears to be a 
contiguous zone of fewer 
wet days extending east-
to-west through eastern 
Oklahoma, and more iso-
lated areas of even fewer wet 
days in the west and south 
(Fig. 7a). Very few stations 
in Oklahoma passed all 
of the observer bias tests, 
and the map created from 
these stations shows none 
of the features just described 
(Fig. 7b). It shows a gen-
eral east–west gradient 
from higher values in the 
east and lower values in the 
west, and a tongue of higher 
values extending westward 
from Arkansas along the 
westward extension of the 
Ouachita Mountains in 
southeastern Oklahoma.

Perhaps the most interesting aspect of this com-
parison is that it is not just the spatial patterns that 
are different, but the actual values, as well. Except for 
locations that have stations in common in both maps, 
the percent of wet days was typically about 5% higher 
on the map created with stations that passed the bias 
tests than on the all-station map. As was discussed in 
the comparison of frequency histograms for Purcell 
5 SW and Watonga, Oklahoma (Fig. 5), this appears 
to be due to an unusually high frequency of zero 

FIG. 7. Spatial distribution of the 1971–2000 mean percent of wet days [days 
receiving at least 0.01 in. (0.25 mm) of precipitation] over a portion of 
Oklahoma: (a) using all stations that passed the data completeness tests; and 
(b) using only stations passing both the data completeness, underreporting 
bias, and 5/10 bias tests. Stations passing all tests are indicated by large black 
dots, and those passing only the data completeness tests are shown as small 
black dots. Purcell 5 SW and Watonga, OK, whose frequency histograms 
appear in Fig. 5, are marked with red dots.
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precipitation observations at underreporting-biased 
stations, which may be a result of higher thresholds 
for inconsequential precipitation for some observers 
than for others.

It is frankly difficult to accept the removal of so 
many stations from a spatial analysis, and we cannot 
help but wonder if any real climatic features were 
eliminated by removing so many stations. However, 
the frequency histograms such as those in Fig. 5 are 
a reminder of how poor and misleading the distri-
bution of precipitation observations can be at many 
COOP stations.

Temporal ramifications. The severity of observer bias 
was often found to vary over time. Consider USHCN 
station Vale, Oregon (358797), and Malheur Branch 
Experiment Station (355160; hereafter abbreviated 

as Malheur), located approximately 20 km apart 
in eastern Oregon. For the 1971–2000 period, Vale 
exhibits a subtle low bias and a significant 5/10 bias, 
while Malheur exhibits only a small 5/10 bias (Fig. 8). 
Vale failed all three observer bias tests, while Malheur 

FIG. 8. Percent frequency distribution of daily precipi-
tation of at least 0.01 in. for the period 1971–2000 at 
COOP stations: (a) Vale, OR (358797), which exhibits 
a subtle underreporting bias and a more obvious 5/10 
bias; and (b) Malheur Branch Experiment Station 
(355160), approximately 20 km to the east, which 
exhibits a small 5/10 bias. Solid curve is the fitted 
gamma function.

FIG. 9. Percent frequency distribution of daily precipita-
tion of at least 0.01 inch at COOP/USHCN station Vale, 
OR (358797), for the period (a) 1930–50, which had an 
underreporting bias and strong 5/10 bias; (b) 1950–80, 
which was relatively free of bias; and (c) 1980–2005, 
showing a return to underreporting bias and 5/10 bias. 
Solid curves are the fitted gamma functions.
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passed all three (Table 1). An example of temporal 
variability in observer bias at Vale is shown in Fig. 9. 
The period 1930–50 exhibited visible underreport-
ing and 5/10 biases (Fig. 9a), 1950–80 was relatively 
free of bias (Fig. 9b), and 1980–2005 returned to an 
underreporting bias and a 5/10 bias (Fig. 9c).

Such changes over time complicate the issue by 
presenting a moving target to efforts to assess and 
adjust for observer bias. However, they also provide 
valuable insight into the implications of observer 
bias by allowing analysis of the relationships between 
trends in the observer bias test statistics and trends 
in commonly used precipitation statistics at two 
nearby stations. Figure 10 shows time series of the 
10-year running mean of RL, the underreporting bias 
ratio, and the maximum of the 5s and 10s bias test 
t statistics (t510) for Vale and Malheur for the period 
1965–2004. The t510 statistic ref lects the highest 
t statistic (worst case) of the two 5/10 tests. We used 
a 10-yr running mean, because at least 10 yr of data 
are typically required for stable statistical results. We 
chose the period 1965–2004 because it was character-
ized by a rapid divergence in the trends of RL and t510 
at the two stations. Vale showed a clear trend toward 
increasing observer bias in both test statistics, while 
Malheur remained reasonably unbiased throughout 
the period.

Figure 11 presents time series trends for three 
commonly used precipitation statistics at Vale and 
Malheur: the percent of days that were wet, average 
precipitation on a wet day, and the mean annual 
precipitation. The percent of wet days at both sta-
tions began at about 19% during the 10-yr period 
ending in 1974, but diverged sharply in later years, 
with Vale trending strongly downward and Malheur 
slightly upward (Fig. 11a). By the 10-yr period ending 
in 2004, the percent of wet days at Vale had reached 
a low of 13%, a 6% drop, while Malheur reported an 
increase to about 25%, a 7% rise. Trends in the aver-
age precipitation on a wet day show a near-doubling 
of the average daily precipitation at Vale from 0.12 to 
0.22 in. (3.05–5.59 mm) day–1, while Malheur shows a 
slight drop (Fig. 11b). Trends in mean annual precipi-
tation, a relatively stable precipitation statistic, did not 
exhibit dramatically different trends, but Vale’s value 
increased relative to Malheur (Fig. 11c).

Relationships between the temporal trends in RL 
and t510 and those of the three precipitation statistics 
in Fig. 11 were explored by generating scatterplots of 
the interstation differences of one versus the other. 
As seen in Fig. 12, definite relationships exist. As 
the difference in RL increased, signaling increased 
underreporting bias at Vale, there was a strong linear 

tendency for the number of wet days to decrease com-
pared to Malheur (Fig. 12a). This suggests that the 
observer increasingly recorded precipitation values 
of zero or trace on many days, up to 13% more than 
recorded at Malheur by the 10-yr period ending in 
2004. Further analysis revealed that the number of 
zero precipitation days was strongly and positively 
related to trends in RL, while the number of trace days 
was not, suggesting that the observer recorded more 
zeros than actually occurred.

Given the decreasing wet day trend at Vale, it 
was not surprising to see an increase in the average 
precipitation on a wet day (Fig. 12b). This statistic 
represents the average precipitation intensity when 
precipitation occurs. If there are fewer wet days and 
the total amount of annual precipitation remains 
reasonably constant, it stands to reason that the 

FIG. 10. Time series of the 10-yr running mean of 
(a) the underreporting bias ratio RL; and (b) the 5/10 bias 
maximum t statistic t510; for COOP stations Vale, OR 
(358797), and Malheur Branch Experiment Station, OR 
(355160), for the period 1965–2004. Running means 
are plotted as year ending, e.g., 1985 represents the 
period 1976–85.
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precipitation intensity would rise. However, observer 
bias did affect the mean annual precipitation as 
well (Fig. 12c). The relationship was strongest with 

changes in t510; for every increase in t510 difference 
of 1.0, the mean annual precipitation increased by 
0.16 in. (4.00 mm), up to about 1 in. (25.40 mm). 
Given that the mean annual precipitation at these 
two stations was approximately 10 in., the increase 
in mean annual precipitation at Vale attributable to 

FIG. 11. Time series of the 10-yr running mean of (a) the 
percent of days that are wet (>=0.01 in.; 0.25 mm); 
(b) the average precipitation on a wet day; and 
(c) mean annual precipitation for COOP stations Vale, 
OR (358797), and Malheur Branch Experiment Station, 
OR (355160), for the period 1965–2004. Running means 
are plotted as year ending, e.g., 1985 represents the 
period 1976–85.

FIG. 12. Scatterplots of dif ferences in the 10-yr 
running means of RL or t510 versus differences in the 
10-yr running means of commonly used precipita-
tion statistics for COOP/USHCN stations Vale, OR 
(358687), and Malheur Branch Experiment Station, OR 
(355160), for the period 1965–2004: (a) RL vs percent of 
days on which at least 0.01 in. (0.25 mm) or greater was 
recorded (wet days); (b) RL vs average precipitation on 
a wet day; and (c) t510 vs mean annual precipitation.
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observer bias was about 10%. 
Reasons for this relationship 
are not clear, but may have 
been related to the observer 
rounding to higher values 
divisible by 5 and 10.

SCOPE OF OBSERVER 
BIAS. To gain perspective 
on the extent of observer 
bias in COOP precipitation 
data across the continental 
United States, all COOP sta-
tions having at least some 
data within the 1971–2000 
period were subjected to the 
data completeness and ob-
server bias tests. The results, 
summarized in Table 2 and 
Fig. 13, were not encouraging. 
Out of over 12,000 candidate 
COOP stations, 25% passed 
the data completeness tests, 
and of those, 25% passed the 
observer bias tests, leaving 
just over 6% of the total, 
or 784 stations (Table 2). 
USHCN stations, included in 
this network partly because 
of their long and complete 
records, fared better on the 
data completeness tests, with 
two-thirds passing. However, 
the observer bias failure rate 
was about the same as for 
the total COOP population. 
In the end, 18% , or 221 
USHCN stations, passed all 
tests (Table 2). The spatial 
distribution of USHCN stations passing and failing 
the tests showed no particular pattern across the 
continental United States, with all major regions and 
climate regimes affected (Fig. 13).

As a check on the reasonableness of the observer 
bias screening tests, we obtained daily precipitation 
totals from hourly data at 224 first-order stations 
from Surface Airways Observation archives for the 
period 1 July 1996–31 July 2006. To provide suffi-
cient observations for testing, we accepted a station 
only if it had at least 100 wet days and a total of 3000 
nonmissing days. Given that all of these stations 
employed the Automated Surface Observing System 
(ASOS) during this period, we would not expect them 

TABLE 2. Number and percent of COOP stations that pass data complete-
ness and observer bias tests for the period 1971–2000. USHCN stations 
(a subset of the All COOP stations) are broken out separately. Only 6% 
of all COOP and 18% of USHCN stations passed all tests.

All COOP USHCN

Count Percent Count Percent

Total candidate stations 12439 100 1221 100

Passed data completeness tests 2807 23 820 67

Passed neither bias test 584 5 149 12

Passed 5/10 bias only 92 1 26 2

Passed underreporting bias only 1347 11 424 35

Total passed all completeness 
and bias tests

784 6 221 18

to suffer from observer bias. All of these stations did 
pass the observer bias tests, suggesting that these 
tests, while designed as rough screening devices, were 
providing reasonable results.

DISCUSSION AND RECOMMENDATIONS. 
The causes of observer bias are not yet clear, but 
some early speculations can be made. One cause 
of the 5/10 bias may be the way that the measuring 
sticks are marked and labeled; the larger the mark or 
label at a given amount, the more likely an observer 
will choose that amount. Another possible contrib-
uting factor is that not all COOP measuring sticks 
are alike. At the Corvallis Hyslop COOP station, the 

FIG. 13. Distribution of USHCN stations passing data completeness and ob-
server bias tests for the period 1971–2000. Only those stations passing the 
data completeness tests were subjected to the observer bias tests.
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observer possesses two measuring sticks, an old one 
issued by the U.S. Weather Bureau and a newer one 
issued by the National Weather Service. He uses the 
older stick almost exclusively, because the finish on 
the new one is too smooth and impervious to allow 
water to impregnate the stick sufficiently to create 
a darkened, wetted area that is easy to read. The 
water beads up and runs off the front surface of the 
newer stick, forcing the observer to turn the stick to 
the side and read one of the narrow edges, where the 
water soaks in a bit further.3 Given that the larger 
and labeled tick marks on the stick represent round 
values toward which an observer might already 
gravitate, this additional measuring uncertainty 
may further motivate observers to choose one of 
these round numbers.

Another possible cause of a 5/10 bias is the ten-
dency to apportion the precipitation total into two 
different periods when the observation is not per-
formed at the assigned time (M. Kelsch 2006, personal 
communication). For example, consider a situation in 
which it is raining, the observation time is 1700 LST, 
and the observer is not able to read the gauge until 
1800 LST. There is 0.28 in. in the gauge. The observer 
knows the rain started a little before 1500 LST and has 
been fairly steady since then. Therefore, the observer 
estimates that at least two-thirds of the 0.28 in. had 
fallen by the observation time of 1700 LST, and 
the remaining since then. When doing the mental 
math to apportion the precipitation, there may be a 
tendency to gravitate to round numbers, so that the 
0.28-in. total is split into 0.20 and 0.08 in. In this 
case, the overall precipitation amount between the 
2 days would be accurate to 0.01 in., but the 5/10 bias 
is introduced when the total is split between two 
time periods.

There appears to be a strong tendency for observers 
to favor 0.10 in. (2.54 mm) and underreport lower 
values, with the occasional exception of 0.05 in. 
(1.27 mm). It is possible that many observers do not 
see the need to take a precipitation measurement 
if they perceive that inconsequential precipitation 
had fallen in the last 24 h, or are unaware that any 
had fallen and do not check the gauge for confirma-
tion. They may record zero for such days, and allow 
what is effectively an accumulation to occur until 
an observation is made. This is consistent with our 

analysis showing a disproportionately large number 
of zero observations at highly biased stations. It 
appears that on many occasions, the lower limit of 
consequential precipitation is in the vicinity of 0.10 in. 
(2.54 mm), which may be rounded to that value if the 
observer reads the measuring stick with a 5/10 bias.

Underreporting of light precipitation might be 
reduced if the observer could rapidly determine if 
any rain fell during the observation period. Standard 
metal 8-in. rain gauges are opaque, and do not allow 
the observer to determine at a glance if they contain 
water. A clear plastic gauge mounted nearby would 
provide a quick assessment of whether a measurement 
is needed. Plastic may also be better suited than metal 
for the actual measurement of light precipitation 
amounts. In a 10-yr comparison of a 4-in. plastic 
gauge with a standard 8-in. gauge, Doesken (2005) 
found that the 4-in. gauge consistently collected more 
precipitation. Much of the difference appeared to 
occur during very light events, which he attributed 
to lower wetting and evaporative losses of the plastic 
surface compared to the metallic surface.

Regardless of the exact reasons, observer bias 
suggests a lack of understanding of COOP precipita-
tion measurement procedures, an inability or lack of 
commitment to fully carry them out, or both. These 
problems may be largely unavoidable given the vol-
unteer status of the COOP observers, and the lack of 
accountability associated with this status. However, 
if COOP data are to be used in what has become an 
increasingly large, diverse, and critical set of applica-
tions, there is a correspondingly heightened need to 
improve the quality of these data. One possible step 
would be to develop training materials that put proce-
dural instruction in the context of data applications. 
Do observers know how their data are being used? Do 
they know that recording a zero on days with just a 
little rainfall can compromise the results of applica-
tions that use their data? Do they understand the 
meaning of such terms such as precision and accuracy 
and why they are important in real-world applica-
tions? A related step would be to establish vehicles 
for frequent and effective communication between 
COOP observers and the National Weather Service, 
and among the observers themselves. It stands to 
reason that observers who are actively engaged would 
be more likely to make accurate observations than 
those working in relative isolation.

Unfortunately, even the most effective training 
materials are not likely to eliminate observer bias. 
One solution to human observer bias might be 
to automate the COOP precipitation measure-
ment system. National Oceanic and Atmospheric 

3 It appears that the newer measuring stick was part of a batch 
issued in the early 2000s that drew complaints from observ-
ers, and was subsequently discontinued (S. Nelson 2006, 
personal communication). However, the Corvallis Hyslop 
observer was not aware of this.
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Administration (NOAA) Environmental Real-time 
Observation Network (NERON) is a new national 
program designed to accomplish this. In the first 
phase of NERON, 100 automated stations were 
installed in New England and eastern New York. 
As stated in NERON documentation, the main 
advantage of automating the COOP network is the 
availability of air temperature and precipitation every 
5 min and disseminated in real time (NOAA–NWS 
2006). However, automation is expensive, and could 
introduce other sources of bias inherent in automated 
instrumentation, such as electronic biases and instru-
ment malfunctions, and potential difficulty with 
frozen precipitation and heavy precipitation events. 
Biases associated with automated gauges could prove 
to be of similar magnitude and complexity to human 
observer biases, depending on the gauge type.

Observer bias is not easily identified by quality 
control procedures running on a day-by-day, or even 
month-by-month, basis. Our initial analysis suggests 
that observer bias is not characterized by extremely 
high measurements on low precipitation days, or by 
very low precipitation measurements on high precipi-
tation days. Instead, the biased values are in the ball 
park, and differences between neighboring stations 
are typically swamped by the spatial variability of 
precipitation and the complicating factor of variable 
times of observation among nearby stations. The 
effects of observer bias accumulate over time, and 
unless the bias is extremely obvious, only become 
visible through analysis of long-term statistics.

While the effects of observer bias are most easily 
identified with long-term statistics, the phenomenon 
itself is temporally complex and unpredictable. Many 
COOP stations engage two or more observers who 
may be responsible for recording data on different 
days, or fill in for one another during travel and 
vacation times, in addition to periodic turnover of the 
personnel themselves. This can lead to a confusing 
spectrum of biases with complex temporal behaviors 
at the same station. Observer changes are not noted 
in the standard COOP metadata, and thus can be 
difficult to track over time. However, even at stations 
operated by a single observer over many decades, our 
analyses have shown that distinct and significant 
temporal trends in observer bias can still occur.

This study has only scratched the surface of this 
issue, and it will take much more work to adequately 
assess the true scope and implications of observer 
bias on a variety of precipitation statistics. Additional 
studies should seek to better characterize the nature 
of observer bias, develop more robust statistical tests 
to identify various types of observer bias, and possibly 

develop an early warning system to identify stations 
that are beginning to show increases in observer bias. 
In the least, confidence intervals around the means 
and temporal trends in precipitation statistics calcu-
lated from these stations need to be estimated. One 
possible approach is to use data from longer-term 
automatic observing systems to gain more insight 
into the implications of observer bias for various pre-
cipitation statistics, and how they might be accounted 
for. Candidate systems are ASOS, and high-quality, 
smaller-scale automated networks that have been 
running for at least 10 yr (e.g., the Oklahoma 
Mesonet), to allow the calculation of stable, long-
term precipitation statistics. However, the biases 
inherent in automated systems discussed previously 
would have to be accounted for. A possible outcome 
from further work would be a gold standard subset 
of long-term COOP stations exhibiting consistently 
low observer bias. Such a subset would be valuable for 
the calculation of means and trends in precipitation 
statistics most affected by observer bias.

We have developed an observer bias Web application 
that allows users to create a frequency histogram of 
daily precipitation observations at any COOP station 
over any time period for which our database has 
information. This application can be accessed by the 
public online at http://www.prismclimate.org/bias/.
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